Continuous measurement of ATP by 31P-NMR in term human dually perfused placenta in vitro: response to ischemia

Author:

Malek A.1,Miller R. K.1,Mattison D. R.1,Ceckler T.1,Panigel M.1,di Sant'Agnese P. A.1,Jessee L. N.1

Affiliation:

1. Department of Obstetrics and Gynecology, University of Rochester Medical Center, New York 14642, USA.

Abstract

ATP was examined in dually perfused term human placentas by using 31P-nuclear magnetic resonance (NMR) spectroscopy. 31P-NMR spectra were acquired every 30 min starting approximately 30 min after establishing fetal and maternal perfusions, and maternal perfusate samples were obtained to monitor glucose utilization, lactate production, and human chorionic gonadotropin (hCG) and human placental lactogen (hPL) release. In continuous-perfusion experiments, placentas were perfused as long as 10 h. ATP increased and Pi fell after initiation of perfusion. Fetal volume loss was < 2 ml/h, and constant production of hCG, hPL, and lactate as well as constant utilization of glucose were observed. In additional experiments, ischemia was produced by halting maternal and fetal perfusion pumps after a 2-h control period. After 2, 3, or 4 h of ischemia, ATP decreased 46 +/- 17, 51 +/- 5, and 85% of control, respectively. When perfusion was reinitiated, ATP increased and was maintained for the duration of the experiment (an additional 2 h). Recovery of ATP after reperfusion was not paralleled by recovery in glucose utilization, lactate production, or hPL and hCG release. However, during the reperfusion period, fetal pressure was < 70 mmHg and fetal volume loss was < 2 ml/h. These investigations suggest that the dually perfused human placental lobule can maintain ATP for > or = 10 h. Although the perfused human placenta recovers ATP and maintains fetal perfusion volume after ischemia lasting up to 4 h, utilization of glucose, production of lactate, and production and release of hCG and hPL are impaired.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3