Control of expiratory time in conscious humans

Author:

Rafferty G. F.1,Evans J.1,Gardner W. N.1

Affiliation:

1. Department of Physiology, King's College London, United Kingdom.

Abstract

Combinations of 17 normal awake humans breathed mildly hyperoxic and hypercapnic gas mixtures via a pneumotachograph into an open circuit. Respiratory pattern was measured for each breath in real time by computer. Use of computer-controlled auditory feedback at a constant end-tidal PCO2 (PETCO2) allowed prolonged changes of 1) inspiratory time (TI) at constant inspired tidal volume (VTI), 2) VTI up and down in repeated steps at constant TI, and 3) expiratory time (TE) at constant VTI. The remaining variables were free to be determined by the subjects' automatic respiratory control mechanisms. We showed that TE changed in parallel with the change in TI despite constant VTI, TE did not change in response to step changes in VTI at constant TI, and large changes in TE had no influence on the subsequent TI, but VTI increased slightly as TE lengthened despite clamping. Time for expiratory flow (TE--end-expiratory pause) changed in parallel with TE in all protocols. Thus, in conscious humans, inspiratory timing has a direct influence on expiratory timing, independent of volume change and chemical drive, but expiratory timing has no influence on the inspiratory timing of the subsequent breath but has a small influence on volume.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3