Lung water measurement by nuclear magnetic resonance: correlation with morphometry

Author:

Cutillo A. G.1,Goodrich K. C.1,Ganesan K.1,Watanabe S.1,Ailion D. C.1,Albertine K. H.1,Morris A. H.1,Durney C. H.1

Affiliation:

1. Department of Internal Medicine, University of Utah, Salt Lake City 84132, USA.

Abstract

Estimates of lung water content obtained from nuclear magnetic resonance (NMR) and morphometric and gravimetric measurements were compared in normal and experimentally injured rats. Average lung water density (rho H2O) was measured by an NMR technique in excised unperfused rat lungs (20 normal lungs and 12 lungs with oleic acid-induced edema) at 0 (full passive deflation) and 30 cmH2O lung inflation pressure and in vivo (4 normal rats and 8 rats with lung injury induced by oleic acid or rapid saline infusion). The rho H2O values were compared with morphometric measurements of lung tissue volume density (Vv) obtained from the same lungs fixed at corresponding liquid-instillation pressures. A close correlation was observed between rho H2O and Vv in normal and injured excised lungs [correlation coefficient (r) = 0.910, P < 0.01]. In vivo rho H2O was also closely correlated with Vv (r = 0.897, P < 0.01). The correlation coefficients between rho H2O and gravimetric lung water content (LWGr) were lower in the excised lung group (r = 0.663 and 0.692, respectively, for rho H2O at 0 and 30 cmH2O lung inflation pressure, P < 0.01) than in the in vivo study (r = 0.857, P < 0.01). Our results indicate that NMR techniques, which are noninvasive and nondestructive, provide reliable estimates of lung water density and that the influence of lung inflation on rho H2O is important (compared with the effect of lung water accumulation in lung injury) only in the presence of deliberately induced very large variations in the lung inflation level.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3