ATP-sensitive K+ channel blockade impairs O2 extraction during progressive ischemia in pig hindlimb

Author:

Vallet B.1,Curtis S. E.1,Guery B.1,Mangalaboyi J.1,Menager P.1,Cain S. M.1,Chopin C.1,Dupuis B. A.1

Affiliation:

1. Department of Intensive Care, University of Lille, France.

Abstract

Tissues maintain O2 consumption (VO2) when blood flow and O2 delivery (DO2) are decreased by better matching of blood flow to meet local cellular O2 demand, a process that increases extraction of available O2. This study tested the hypothesis that ATP-sensitive K+ channels play a significant role in the response of pig hindlimb to ischemia. We pump perfused the vascularly isolated but innervated right hindlimb of 14 anesthetized pigs with normoxic blood while measuring hindlimb DO2, VO2, perfusion pressure, and cytochrome aa3 redox state. In one-half of the pigs, the pump-perfused hindlimb was also infused with 10 micrograms.min-1.kg-1 of glibenclamide, a potent blocker of ATP-sensitive K+ channels. Control animals were infused with 5% glucose solution alone. Blood flow was then progressively reduced in both groups in 10 steps at 10-min intervals. Glibenclamide had no effect on any preischemic hindlimb or systemic measurements. Hindlimb VO2 and cytochrome aa3 redox state began to decrease at a significantly higher DO2 in glibenclamide-treated compared with control pigs. At this critical DO2, the O2 extraction ratio (VO2/DO2) was 53 +/- 4% in the glibenclamide group and 73 +/- 5% in the control group (P < 0.05). Hindlimb vascular resistance increased significantly with ischemia in the glibenclamide group but did not change in the control group. We conclude that ATP-sensitive K+ channels may be importantly involved in the vascular recruitment response that tried to meet tissue O2 needs as blood flow was progressively reduced in the pig hindlimb.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3