Affiliation:
1. Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver 80262.
Abstract
In a previous work, we showed that the adult cat demonstrates a ventilatory decline during sustained hypoxia (the “roll off” phenomenon) and that the mechanism responsible for this secondary decrease in ventilation lies within the central nervous system (J. Appl. Physiol. 63: 1658–1664, 1987). In this study, we sought to determine whether central dopaminergic mechanisms could have a role in the roll off. We studied the effects of haloperidol, a peripheral and centrally acting dopamine receptor antagonist, on the ventilatory response to sustained isocapnic hypoxia (end-tidal PO2 40–50 Torr, 20–25 min) in awake cats. In vehicle control cats (n = 5), sustained hypoxia elicited a biphasic respiratory response, during which an initial ventilatory stimulation is followed by a 24 +/- 6% (P less than 0.01) reduction. In contrast, in haloperidol- (0.1 mg/kg) treated cats (n = 5) the ventilatory roll off was virtually abolished (-1 +/- 1%; P = NS). We also measured ventilatory, carotid sinus nerve (CSN) and phrenic nerve (PhN) responses to sustained isocapnic hypoxia in anesthetized animals (n = 6) to explore the influence of haloperidol on peripheral and central response during the roll off. Control responses to hypoxia showed an initial increase in ventilation, PhN, and CSN activity, followed by a subsequent decline in ventilation and PhN activity of 17 +/- 3 and 17 +/- 5%, respectively (P less than 0.05). In contrast, CSN activity remained unchanged during the roll off. Administration of haloperidol (1 mg/kg) reduced the initial increment in ventilation, while the initial increase in CSN activity was augmented.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献