When does the lung die?K fc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung

Author:

Jones David R.1,Becker Randy M.1,Hoffmann Steve C.1,Lemasters John J.1,Egan Thomas M.1

Affiliation:

1. Division of Cardiothoracic Surgery, Department of Surgery, and Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599

Abstract

Jones, David R., Randy M. Becker, Steve C. Hoffmann, John J. Lemasters, and Thomas M. Egan. When does the lung die? K fc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung. J. Appl. Physiol. 83(1): 247–252, 1997.—Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient ( K fc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. K fc increased with increasing postmortem ischemic time ( r = 0.88). Lungs ventilated with O2 1 h postmortem had similar K fc and wet-to-dry ratios as controls. Nonventilated lungs had threefold ( P < 0.05) and sevenfold ( P < 0.0001) increases in K fc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing K fc values ( r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal K fc with preharvest O2 ventilation. The relationship between K fc and TAN suggests that vascular permeability may be related to lung TAN levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel use of lung autotransplantation;Journal of Cardiac Surgery;2021-05-20

2. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema;American Journal of Physiology-Lung Cellular and Molecular Physiology;2009-07

3. Ex-Vivo Perfusion and Ventilation of Rat Lungs From Non-Heart-Beating Donors Before Transplant;The Annals of Thoracic Surgery;2006-10

4. Inhaled nitric oxide reduces ischemia-reperfusion injury in rat lungs from non–heart-beating donors;The Journal of Thoracic and Cardiovascular Surgery;2006-07

5. Ex Vivo Evaluation of Human Lungs for Transplant Suitability;The Annals of Thoracic Surgery;2006-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3