Affiliation:
1. Medical College of Wisconsin, Milwaukee 53226.
Abstract
Seven human spinal cord-lesioned subjects (SPL) underwent electrically induced muscle contractions (EMC) of the quadriceps and hamstring muscles for 10 min: 5 min control, 2 min with venous return from the legs occluded, and 3 min postocclusion. Group mean changes in CO2 output compared with rest were +107 +/- 30.6, +21 +/- 25.7, and +192 +/- 37.0 (SE) ml/min during preocclusion, occlusion, and postocclusion EMC, respectively. Mean arterial CO2 partial pressure (PaCO2) obtained from catheterized radial arteries at 15- to 30-s intervals showed a significant (P less than 0.05) hypocapnia (36.2 Torr) during occlusion and a significant (P less than 0.05) hypercapnia (38.1 Torr) postocclusion relative to a group mean preocclusion EMC PaCO2 of 37.5 Torr. Relative to preocclusion EMC, expired ventilation (VE) decreased during occlusion and increased after release of occlusion. However, changes in VE always occurred after changes in end-tidal PCO2 (mean 41 s after occlusion and 10 s after release of occlusion). In the two subjects investigated during hyperoxia, the VE and PaCO2 responses to occlusion and release did not differ from normoxia. We conclude that the data do not support mediation of the EMC hyperpnea in SPL by humoral mechanisms that others have proposed for mediation of the exercise hyperpnea in spinal cord-intact humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献