Pulmonary diffusing capacities for nitric oxide and carbon monoxide determined by rebreathing in dogs

Author:

Meyer M.1,Schuster K. D.1,Schulz H.1,Mohr M.1,Piiper J.1

Affiliation:

1. Department of Physiology, Max Planck Institute for Experimental Medicine, Gottingen, Federal Republic of Germany.

Abstract

Pulmonary diffusing capacities (DL) of NO and CO were determined simultaneously from rebreathing equilibration kinetics in anesthetized paralyzed supine dogs (mean body wt 20 kg) after denitrogenation (replacement of N2 by Ar). During rebreathing the dogs were ventilated in closed circuit with a gas mixture containing 0.06% NO, 0.06% 13C18O, and 1% He in Ar for 15 s, with tidal volume of 0.5 liter and frequency of 60/min. The partial pressures of NO, 13C18O, 16O18O, N2, Ar, CO2, and He in the trachea were continuously analyzed by mass spectrometry. Measurements were performed at various O2 levels characterized by the mean end-expired PO2 during rebreathing (PE'O2). In control conditions ('normoxia,” PE'O2 = 67 +/- 8 Torr) the following mean +/- SD values were obtained (in ml.min-1.Torr-1): DLNO = 52.4 +/- 11.0 and DLCO = 15.4 +/- 2.9. In hypoxia (PE'O2 = 24 +/- 7 Torr) DLNO increased by 11 +/- 8% and DLCO by 19 +/- 10%, and in hyperoxia (PE'O2 = 390 +/- 26 Torr) DLNO decreased to 87 +/- 3% and DLCO to 56 +/- 8% with respect to values in normoxia. DLNO/DLCO of 3.24 +/- 0.06 (hypoxia), 3.38 +/- 0.31 (normoxia), and 5.54 +/- 1.04 (hyperoxia) were significantly higher than the NO/CO Krogh diffusion constant ratio (1.92) predicted for simple diffusion through aqueous layers. With increasing O2 uptake elicited by 2,4-dinitrophenol, DLNO and DLCO increased and DLNO/DLCO remained close to unchanged. The results suggest that the combined effects of diffusion and chemical reaction with hemoglobin limit alveolar-capillary transport of CO. If it is assumed that reaction kinetics of NO with hemoglobin (known to be extremely fast) are not rate limiting for NO uptake, the contribution of the slow chemical reaction with hemoglobin to the total CO uptake resistance (= 1/DLCO) was estimated to be 38% in hypoxia, 41% in normoxia, and 64% in hyperoxia. The various factors expected to restrict the validity of this analysis are discussed, in particular the effects of functional inhomogeneity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3