Oxygen respiratory gas analysis by sine-wave measurement: a theoretical model

Author:

Hahn C. E.

Abstract

A sinusoidal forcing function inert-gas-exchange model (C. E. W. Hahn, A. M. S. Black, S. A. Barton, and I. Scott. J. Appl. Physiol. 75: 1863–1876, 1993) is modified by replacing the inspired inert gas with oxygen, which then behaves mathematically in the gas phase as if it were an inert gas. A simple perturbation theory is developed that relates the ratios of the amplitudes of the inspired, end-expired, and mixed-expired oxygen sine-wave oscillations to the airways' dead space volume and lung alveolar volume. These relationships are independent of oxygen consumption, the gas-exchange ratio, and the mean fractional inspired (FIO2) and expired oxygen partial pressures. The model also predicts that blood flow shunt fraction (Qs/QT) is directly related to the oxygen sine-wave amplitude perturbations transmitted to end-expired air and arterial and mixed-venous blood through two simple equations. When the mean FIO2 is sufficiently high for arterial hemoglobin to be fully saturated, oxygen behaves mathematically in the blood like a low-solubility inert gas, and the amplitudes of the arterial and end-expired sine-wave perturbations are directly related to Qs/QT. This relationship is independent of the mean arterial and mixed-venous oxygen partial pressures and is also free from mixed-venous perturbation effects at high forcing frequencies. When arterial blood is not fully saturated, the theory predicts that QS/QT is directly related to the ratio of the amplitudes of the induced-saturation sinusoids in arterial and mixed-venous blood. The model therefore predicts that 1) on-line calculation of airway dead space and end-expired lung volume can be made by the addition of an oxygen sine-wave perturbation component to the mean FIO2; and (2) QS/QT can be measured from the resultant oxygen perturbation sine-wave amplitudes in the expired gas and in arterial and mixed-venous blood and is independent of the mean blood oxygen partial pressure and oxyhemoglobin saturation values. These calculations can be updated at the sine-wave forcing period, typically 2–4 min.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3