Erythrocyte deformability and lung segmental vascular resistance: effect of hematocrit

Author:

Raj J. U.1,Anderson J.1

Affiliation:

1. Department of Pediatrics, University of California, Los Angeles, School of Medicine, Torrance 90509.

Abstract

We have investigated the role of erythrocyte (RBC) deformability and perfusate viscosity on lung segmental vascular resistance in 12 isolated perfused lungs of 3- to 5-wk-old rabbits. Each lung was perfused alternately with control and formaldehyde-fixed rabbit RBCs at a flow rate of 80 ml.kg-1.min-1, left atrial and airway pressures being 8 and 6 cmH2O, respectively (zone 3). Perfusate RBC concentration was kept constant at 3.2 x 10(6)/mm3 for group I lungs (n = 6) and 7.2 x 10(6)/mm3 for group II lungs (n = 6). In all lungs, we measured pressures in the pulmonary artery and in 20- to 50-microns-diam arterioles and venules with the micropipette servo-null method during both perfusion periods. Compared with control, fixed cells had a 60% decrease in deformability index (i.e., the volume of a dilute solution of RBCs filtered through a 5-microns Nuclepore filter in 1 min). In groups I and II, perfusate viscosity of fixed cells was 15 and 55% greater, respectively, than that of control cells. We found that perfusion with fixed cells in group I lungs did not alter total or segmental vascular pressure drops. However, in group II lungs, perfusion with fixed cells at twice the cell concentration resulted in an increase in total vascular pressure drop, mainly due to an increase in pressure drop in veins (50% of total) and arteries (33%). The relatively small (17%) increase in pressure drop in microvessels was probably due to distension and/or recruitment of capillaries resulting from increased venular pressures.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3