NIP-121 is more effective than nifedipine in acutely reversing chronic pulmonary hypertension

Author:

Oka M.1,Morris K. G.1,McMurtry I. F.1

Affiliation:

1. Department of Medicine, University of Colorado Health Sciences Center, Denver 80262.

Abstract

To determine if NIP-121, a new antihypertensive agent with K+ channel-opening activity, would be an effective vasodilator in pulmonary hypertension, we studied its acute hemodynamic effects under normoxic conditions in conscious chronically hypoxic pulmonary hypertensive rats and in control pulmonary normotensive rats. In contrast to no pulmonary vasodilation by NIP-121 in control rats, the K+ channel activator (10–100 mg/kg i.v.) decreased both mean pulmonary arterial pressure (from 42 +/- 2 to 33 +/- 2 mmHg; P < 0.05) and total pulmonary resistance (from 278 +/- 30 to 213 +/- 32 mmHg.l-1 x min; P < 0.05) in hypertensive rats. NIP-121 produced similar dose-related decreases in mean systemic arterial pressure and total systemic resistance in both groups of rats. Both the pulmonary and the systemic vasodilations to NIP-121 were inhibited by pretreatment with the blocker of ATP-sensitive K+ channels, glibenclamide (20 mg/kg), but not with the inhibitor of endothelium-derived relaxing factor synthesis, nitro-L-arginine (10 mg/kg). The L-type voltage-gated Ca2+ channel blocker, nifedipine (10–1,000 mg/kg i.v.), failed to cause pulmonary vasodilation in normoxic hypertensive rats, although there was dose-related systemic vasodilation. These results show that in contrast to the Ca2+ channel blocker, nifedipine, the K+ channel activator, NIP-121, is a potent vasodilator of chronic hypoxia-induced pulmonary hypertension in the rat. The mechanism of its hypotensive action in the hypertensive pulmonary vasculature might be more than simply membrane hyperpolarization and indirect inhibition of the L-type voltage-gated Ca2+ channel.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3