Effect of global inspiratory muscle fatigue on ventilatory and respiratory muscle responses to CO2

Author:

Yan S.1,Sliwinski P.1,Gauthier A. P.1,Lichros I.1,Zakynthinos S.1,Macklem P. T.1

Affiliation:

1. Meakins-Christie Laboratories, McGill University Clinic, Royal Victoria Hospital, Montreal, Quebec, Canada.

Abstract

We evaluated the effect of global inspiratory muscle fatigue on ventilation and respiratory muscle control during CO2 rebreathing in normal subjects. Fatigue was induced by breathing against a high inspiratory resistance until exhaustion. CO2 response curves were measured before and after fatigue. During CO2 rebreathing, global fatigue caused a decreased tidal volume (VT) and an increased breathing frequency but did not change minute ventilation, duty cycle, or mean inspiratory flow. Both esophageal and transdiaphragmatic pressure swings were significantly reduced after global fatigue, suggesting decreased contribution of both rib cage muscles and diaphragm to breathing. End-expiratory transpulmonary pressure for a given CO2 was lower after fatigue, indicating an additional decrease in end-expiratory lung volume due to expiratory muscle recruitment, which leads to a greater initial portion of inspiration being passive. This, combined with the reduction in VT, decreased the fraction of VT attributable to inspiratory muscle contribution; therefore the inspiratory muscle elastic work and power per breath were significantly reduced. We conclude that respiratory control mechanisms are plastic and that the respiratory centers alter their output in a manner appropriate to the contractile state of the respiratory muscles to conserve the ventilatory response to CO2.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3