Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage

Author:

West J. B.1,Mathieu-Costello O.1,Jones J. H.1,Birks E. K.1,Logemann R. B.1,Pascoe J. R.1,Tyler W. S.1

Affiliation:

1. Department of Medicine, School of Medicine, University of California, San Diego, La Jolla 92093–0623.

Abstract

Bleeding into the lungs in thoroughbreds is extremely common; there is evidence that it occurs in essentially all horses in training. However, the mechanism is unknown. We tested the hypothesis that exercise-induced pulmonary hemorrhage (EIPH) is caused by stress failure of pulmonary capillaries. Three thoroughbreds with known EIPH were galloped on a treadmill, and after the horses were killed with intravenous barbiturate the lungs were removed, inflated, and fixed for electron microscopy. Ultrastructural studies showed evidence of stress failure of pulmonary capillaries, including disruptions of the capillary endothelial and alveolar epithelial layers, extensive collections of red blood cells in the alveolar wall interstitium, proteinaceous fluid and red blood cells in the alveolar spaces, interstitial edema, and fluid-filled protrusions of the endothelium into the capillary lumen. The appearances were consistent with the ultrastructural changes we have previously described in rabbit lungs at high capillary transmural pressures. Actual breaks in the endothelium and epithelium were rather difficult to find, and they were frequently associated with platelets and leukocytes that appeared to be plugging the breaks. The paucity of breaks was ascribed to their reversibility when the pressure was lowered and to the fact that 60–70 min elapsed between the gallop and the beginning of lung fixation. Capillary wall stress was calculated from pulmonary vascular pressures measured in a companion study (Jones et al. FASEB J. 6: A2020, 1992) and from measurements of the thickness of the blood-gas barrier and the radius of curvature of the capillaries. The value was as high as 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2), which exceeds the breaking stress of most soft tissues. We conclude that stress failure of pulmonary capillaries is the mechanism of EIPH.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3