Contribution of in vivo microvascular PO2 in the cat carotid body chemotransduction

Author:

Lahiri S.1,Rumsey W. L.1,Wilson D. F.1,Iturriaga R.1

Affiliation:

1. Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104.

Abstract

To understand the interplay between microcirculatory control and carotid body (CB) function, we simultaneously measured carotid body microvascular PO2 (CBM PO2) and chemosensory activity in the cat in vivo under several experimental conditions. Cats were anesthetized with pentobarbital sodium, paralyzed, and artificially ventilated. CBs were exposed, and steady-state CBM PO2 was measured by the O2-dependent quenching of the phosphorescence of Pd-meso-tetra-(4-carboxyphenyl)porphine, which was administered intravenously. A few fibers of the carotid sinus nerve were used to record chemosensory discharges. At arterial PO2 (PaO2) of 103.4 +/- 4.1 Torr, CBM PO2 was 52.5 +/- 3.6 Torr (n = 9). Graded lowering of PaO2 from 160 to 50 Torr resulted in nearly proportional decreases in CBM PO2, but at lower PaO2 the decrease in CBM PO2 became more substantial. As PaO2 decreased, chemosensory discharge increased in parallel with CBM PO2. Hypercapnia and hypocapnia did not significantly change the relationship between PaO2 and CBM PO2, although the chemosensory discharge responded significantly. CBM PO2 and chemosensory discharge were not affected by hemorrhagic hypotension until arterial blood pressure fell below approximately 50 Torr and then CBM PO2 decreased and chemosensory discharge increased. The lack of a significant effect of hemorrhagic hypotension indicated that O2 delivery to CB was almost independent of the systemic blood pressure. Taken together, the observations suggest that CB microcirculation and PO2 are subject to control by intrinsic mechanisms and that CBM PO2 is compatible with oxidative metabolism playing a role in O2 chemoreception during hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3