Affiliation:
1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139.
Abstract
A numerical model that simulates airway closure by liquid bridging during expiration has been developed. The effects of both surfactant and time-varying geometry have been included; the model determines the liquid layer flow resulting from a surface tension (Rayleigh) instability, and the computation traces the film's development to closure, yielding pressure, velocity, surface shape, and surfactant concentration distributions. It is found that surfactant is effective in retarding or eliminating liquid bridging through the reduction of the mean surface tension and the action of surface tension gradients. The former effect is also critical in minimizing the magnitude of the negative pressure in the liquid layer and thus presumably in reducing the tendency for airway compliant collapse.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献