Carbon dioxide--a major determinant of collateral ventilation

Author:

Traystman R. J.,Terry P. B.,Menkes H. A.

Abstract

The effects of local or systemic CO2 and changes in pulmonary vascular pressure and flow on the mechanics of collateral ventilation were studied in anesthetized, paralyzed dogs. The resistance to collateral ventilation (Rcoll) decreased by 36.1% when the air being infused into the obstructed segment was replaced with 10% CO2 while the animal was ventilated with air. When the air used to ventilate the animals was replaced with 10% CO2 while air was infused into the segment, Rcoll decreased by 38.6%. When blood flow into the pulmonary artery was stopped (stop flow), pulmonary artery and left atrial pressure decreased. Rcoll increased following stop flow to 125% of control; however, the fall in pulmonary vascular pressures preceded the change in Rcoll. The increase in Rcoll with stop flow was markedly reduced when 10% CO2 was infused into the segment. We conclude that collateral channels respond both to the local infusion of CO2 and to the CO2 concentration in the surrounding lung and/or blood, and that the state of distention of pulmonary vessels surrounding collateral ventilatory channels is not a primary determinant of Rcoll. In addition we conclude that bronchiolar channels rather than interalveolar pores are the pathways for collateral ventilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3