Hydration effects on physiological strain of horses during exercise-heat stress

Author:

Geor Raymond J.1,McCutcheon Laura Jill2

Affiliation:

1. Departments of Clinical Studies and

2. Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

This study examined the effects of hyperhydration, exercise-induced dehydration, and oral fluid replacement on physiological strain of horses during exercise-heat stress. On three occasions, six horses completed a 90-min exercise protocol (50% maximal O2 uptake, 34.5°C, 48% relative humidity) divided into two 45-min periods ( exercise I and exercise II) with a 15-min recovery between exercise bouts. In random order, horses received no fluid (NF), 10 liters of water (W), or a carbohydrate-electrolyte solution (CE) 2 h before exercise and between exercise bouts. Compared with NF, preexercise hyperhydration (W and CE) did not alter heart rate, cardiac output (Q˙), stroke volume (SV), core body temperature, sweating rate (SR), or sweating sensitivity during exercise I. In contrast, after exercise II, exercise-induced dehydration in NF (decrease in body mass: NF, 5.6 ± 0.8%; W, 1.1 ± 0.4%; CE, 1.0 ± 0.2%) resulted in greater heat storage, with core body temperature ∼1.0°C higher compared with W and CE. In exercise II, the greater thermal strain in NF was associated with significant ( P < 0.05) decreases inQ˙ (10 ± 2%), SV (9 ± 3%), SR, and sweating sensitivity. We concluded that 1) preexercise hyperhydration provided no thermoregulatory advantage; 2) maintenance of euhydration by oral fluid replacement (∼85% of sweat fluid loss) during exercise in the heat was reflected in higher Q˙, SV, and SR with decreased heat storage; and 3) W or an isotonic CE solution was equally effective in reducing physiological strain associated with exercise-induced dehydration and heat stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3