Affiliation:
1. Department of Physiology and Biophysics, University of California, Irvine, California 92697
Abstract
This study tested the hypothesis that an isometric resistance-training program induces upregulation of slow myosin heavy chain (MHC) expression in a fast-twitch skeletal muscle. Thus we studied the effects of two resistance-training programs on rodent medial gastrocnemius (MG) muscle that were designed to elicit repetitive isometric contractions (10–12 per set; 4 sets per session) of different duration (8 vs. 5 s) and activation frequency (100 vs. 60 Hz) per contraction during each training session (total of 6 and 12 sessions). Results showed that both training paradigms produced significant increases in muscle weight (∼11–13%) after completion of training ( P < 0.05). Significant transformations in MHC expression occurred and involved specifically a decrease in the relative expression of the fast type IIb MHC and concomitant increased expression of the fast type IIx MHC. These adaptations were observed in both the “white” and “red” regions of the MG, and they occurred at both the mRNA and protein levels. These adaptations were detected after only six training sessions. Neither of the training programs produced any change in the relative expression of either the slow type I MHC or the moderately fast type IIa MHC, which can be upregulated in the red MG by chronic functional overload. These findings show that the isometric protocols used in this investigation were not sufficient to induce the hypothesized changes in the myosin heavy chain isoform expression in rodent skeletal muscle.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献