Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate

Author:

Montain S. J.1,Sawka M. N.1,Cadarette B. S.1,Quigley M. D.1,McKay J. M.1

Affiliation:

1. Thermal Physiology and Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760.

Abstract

This study determined the influence of exercise intensity, protective clothing level, and climate on physiological tolerance to uncompensable heat stress. It also compared the relationship between core temperature and the incidence of exhaustion from heat strain for persons wearing protective clothing to previously published data of unclothed persons during uncompensable heat stress. Seven heat-acclimated men attempted 180-min treadmill walks at metabolic rates of approximately 425 and 600 W while wearing full (clo = 1.5) or partial (clo = 1.3) protective clothing in both a desert (43 degrees C dry bulb, 20% relative humidity, wind 2.2 m/s) and tropical (35 degrees C dry bulb, 50% relative humidity, wind 2.2 m/s) climate. During these trials, the evaporative cooling required to maintain thermal balance exceeded the maximal evaporative capacity of the environment and core temperature continued to rise until exhaustion from heat strain occurred. Our findings concerning exhaustion from heat strain are 1) full encapsulation in protective clothing reduces physiological tolerance as core temperature at exhaustion was lower (P < 0.05) in fully than in partially clothed persons, 2) partial encapsulation results in physiological tolerance similar to that reported for unclothed persons, 3) raising metabolic rate from 400 to 600 W does not alter physiological tolerance when subjects are fully clothed, and 4) physiological tolerance is similar when subjects are wearing protective clothing in desert and tropical climates having the same wet bulb globe thermometer. These findings can improve occupational safety guidelines for human heat exposure, as they provide further evidence that the incidence of exhaustion from heat strain can be predicted from core temperature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3