Affiliation:
1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee 53226; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295-1000
Abstract
Stop-flow studies were used to characterize solute uptake in isolated rat lungs. These lungs were perfused at 8 or 34 ml/min for 10–28 s with solutions containing125I-albumin and two or more of the following diffusible indicators: [3H]mannitol, [14C]urea,3HOH,201Tl+, or86Rb+. After this loading period, flow was stopped for 10–300 s and then resumed to flush out the perfusate that remained in the pulmonary vasculature during the stop interval. Concentrations of201Tl+and86Rb+in the venous outflow decreased after the stop interval, indicating uptake from exchange vessels during the stop interval. The amount of these K+ analogs lost from the circulation during the stop interval was greater when the intervals were longer. However, losses of201Tl+at 90 s approached those at 300 s. Because extraction continued after the vasculature had been flushed, vascular levels had presumably fallen to negligible levels during the stop interval. By 90 s of stop flow the vascular volume that was cleared of201Tl+averaged 0.657 ± 0.034 (SE) ml in the experiments perfused at 8 ml/min and 0.629 ± 0.108 ml in those perfused at 34 ml/min. Increases in perfusate K+decreased the cleared volumes of201Tl+and86Rb+. Uptake of [3H]mannitol, [14C]urea, and3HOH during the stop intervals was observed only when the lungs were loaded at high flow for short intervals. Decreases in201Tl+and86Rb+concentrations in the pulmonary outflow can be used to identify the fraction of the collected samples that were within exchange vessels of the lung during the stop interval and may help determine the distribution of solute and water exchange along the pulmonary vasculature.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献