Vasoconstrictor responses of coronary resistance arteries in exercise-trained pigs

Author:

Laughlin M. Harold1,Muller Judy M.1

Affiliation:

1. Departments of Veterinary Biomedical Sciences and Medical Physiology, The Dalton Cardiovascular Research Center, and Division of Cardiology, College of Medicine, University of Missouri, Columbia, Missouri 65211

Abstract

Coronary resistance arteries isolated from exercise-trained pigs have been shown to exhibit enhanced myogenic reactivity (J. M. Muller, P. R. Myers, and M. Harold Laughlin. J. Appl. Physiol.75: 2677–2682, 1993). The purpose of this study was to test the hypothesis that exercise training results in enhanced vasoconstrictor responses of these arteries to all vasoconstrictor stimuli [specifically acetylcholine (ACh), endothelin-1 (ET-1), KCl, and the Ca2+ channel-agonist Bay K 8644]. Female Yucatan miniature swine were trained (Trn) on a motor-driven treadmill ( n = 16) or remained sedentary (Sed, n = 15) for 16–20 wk. Arteries 50–120 μm in diameter were isolated and cannulated with micropipettes, and intraluminal pressure was set at 60 cmH2O throughout experiments. Vasoreactivity was evaluated by examining constrictor responses to increasing concentrations of ACh (10−9 to 10−4 M), ET-1 (10−10 to 10−8 M), KCl (bath replacement with isotonic physiological saline solution containing 30 or 80 mM), and Bay K 8644 (10−9 to 10−6 M). Constricted diameters are expressed relative to the passive diameter observed after 100 μM SNP. All four constrictors produced similar decreases in diameter in arteries from both groups [ACh: 0.52 ± 0.07 (Trn) and 0.54 ± 0,06 (Sed); ET-1: 0.66 ± 0.05 (Trn) and 0.70 ± 0.07 (Sed); KCl: 0.66 ± 0.05 (Trn) and 0.70 ± 0.07 (Sed); Bay K 8644: 0.86 ± 0.05 (Trn) and 0.76 ± 0.05 (Sed)]. Present results combined with previous observations indicate that exercise training does not alter vasoconstrictor responses of porcine coronary resistance arteries but specifically increases myogenic reactivity. Thus the underlying cellular mechanisms for myogenic tone are altered by training but not receptor-mediated mechanisms (ACh and ET-1) nor voltage-gated Ca2+ channels (KCl and Bay K 8644) in coronary resistance arteries.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3