Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle

Author:

Baker Steven K.1,McCullagh Karl J. A.1,Bonen Arend1

Affiliation:

1. Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

We investigated the effects of 3 wk of moderate- (21 m/min, 8% grade) and highintensity treadmill training (31 m/min, 15% grade) on 1) monocarboxylate transporter 1 (MCT-1) content in rat hindlimb muscles and the heart and 2) lactate uptake in isolated soleus (Sol) muscles and perfused hearts. In the moderately trained group MCT-1 was not increased in any of the muscles [Sol, extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] ( P > 0.05). Similarly, lactate uptake in Sol strips was also not increased ( P > 0.05). In contrast, in the heart, MCT-1 (+36%, P < 0.05) and lactate uptake (+72%, P < 0.05) were increased with moderate training. In the highly trained group, MCT-1 (+70%, P < 0.05) and lactate uptake (+79%, P < 0.05) were increased in Sol. MCT-1 was also increased in RG (+94%, P < 0.05) but not in WG and EDL ( P > 0.05). In the highly trained group, heart MCT-1 (+44%, P < 0.05) and lactate uptake (+173%, P < 0.05) were increased. In conclusion, it has been shown that 1) in both heart and skeletal muscle lactate uptake is increased only when MCT-1 is increased; 2) training-induced increases in MCT-1 occurred at a lower training intensity in the heart than in skeletal muscle; 3) in the heart, lactate uptake was increased much more after high-intensity training than after moderate-intensity training, despite similar increases in heart MCT-1 with these two training intensities; and 4) the increases in MCT-1 occurred independently of any changes in the heart’s oxidative capacity (as measured by citrate synthase activity).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3