Affiliation:
1. Department of Physiology and Biophysics, University of Kentucky, Lexington 40536.
Abstract
In a previous study, we reported that inspiratory tracheal occlusion (TO) significantly inhibited the motor drive to the diaphragm in a decerebellated bilaterally vagotomized preparation (J. Appl. Physiol. 75:675–681, 1993). The hypothesis to be tested in the present study was that respiratory muscle afferents activated by inspiratory TO provided the inputs responsible for the observed inhibition. Adult cats were anesthetized, tracheotomized, and instrumented with diaphragm electromyographic (EMGdi) recording electrodes. The cerebellum, vagi, and dorsal spinal cord (C2-T2) were surgically exposed. Inspiratory TO was applied before and after cold blockade of the dorsal cord (C6) or dorsal root (C3–6) transection in the intact and decerebellated vagotomized cat. Respiratory timing (inspiratory and expiratory duration) was determined from the EMGdi record, and the peak integrated EMGdi (integral of EMGdi) response was used as an index of respiratory motor drive. Our results showed that 1) cold blockade at the dorsal C6 level in an intact preparation significantly increased the peak of the integral of EMGdi response to TO and was reversible upon rewarming; 2) as previously reported, decerebellation coupled with bilateral vagotomy significantly decreased the peak integral of EMGdi response to TO with no effect on timing; 3) cold blockade (-1 degree C) of the dorsal cord at C6 significantly attenuated this inhibition, and subsequent dorsal rhizotomy at C3–6 completely abolished this inhibition; and 4) decerebellation, cold blockade of the dorsal cord (C6), and dorsal rhizotomy (C3–6) did not significantly affect baseline values in bilaterally vagotomized cats.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献