Hindlimb and lung lymph flows during prolonged exercise

Author:

Coates G.1,O'Brodovich H.1,Goeree G.1

Affiliation:

1. Department of Radiology, McMaster University, Hamilton, Ontario, Canada.

Abstract

We performed experiments to determine the effect of 2h of exercise on hindlimb lymph flow (QL) and protein concentration in sheep. We compared these results with the lung QL response to long-term exercise. Eleven sheep with catheters in an efferent duct of a prefemoral lymph node and 12 sheep with chronic lung lymph catheters exercised at 2.5–3.0 km/h for up to 2h (lung lymph: range 45–120 min, mean 80 min;hindlimb lymph: range 75–120 min, mean 110.5 min). Cardiac output approximately doubled. Pulmonary vascular resistance decreased by 42%, and systemic vascular resistance decreased by 35%. There were small increases in calculated pulmonary microvascular and arterial pressures. During steady-state exercise, lung QL doubled and the lung lymph-to-plasma protein concentration ratio decreased by 16%. There was an immediate fivefold increase in hindlimb QL, and the hindlimb lymph-to-plasma protein concentration ratio decreased by 26%. Hindlimb QL decreased to a constant 130% above baseline during the last 30 min of exercise. We conclude that the marked increase in hindlimb QL early in exercise is secondary to a massaging effect in working muscles. The steady-state increases in QL toward the end of the exercise period in both lung and hindlimb are secondary to both increased surface area and pressure in the pulmonary and systemic microvascular circulations. Our data suggest that in the lung the major factor determining QL is increased vascular surface area.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3