Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion

Author:

Gil J.,Bachofen H.,Gehr P.,Weibel E. R.

Abstract

The influence of volume changes and interfacial forces on the geometry of peripheral air spaces was studied in excised rabbit lungs inflated with either air or saline and fixed by vascular perfusion at four points of the deflation limb of the pressure-volume curve corresponding to 100, 80, 60, and 40% of the total lung capacity (TLC). In air-filled lungs pleating and folding of alveolar septa were observed, especially in alveolar corners. However, the alveolar surfaces were smooth, except at low lung volumes where some surface crumpling occurred. In saline-filled lungs pleats were absent; the alveolar surface was irregular at all inflation levels due to undulating walls and bulging capillaries. Morphometry indicated that at all alveolar volumes (VA) the surface areas (SA) were larger in saline- than air-filled lungs. No simple mathematical function was found to characterize the relation between SA and VA over the entire volume range studied. Within the range of normal breaths (80 to 40% TLC) the best fit for n in the function SA = k.VnA was 0.58 for saline-filled lungs (r = 0.93) and 0.33 for air-filled lungs (r = 0.68), suggesting different and complex deflation patterns.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3