Affiliation:
1. Laboratory of Cardiovascular and Respiratory Physiology, Erasme University Hospital, Brussels, Belgium.
Abstract
It has recently been suggested that pulmonary hypertension secondary to oleic acid lung injury mainly results from an increase in the critical closing pressure of the pulmonary vessels [Boiteau et al., Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1163-H1170, 1986]. To further test this hypothesis, we studied 1) the pulmonary arterial pressure- (Ppa) flow (Q) relationship with left atrial pressure (Pla) kept constant (n = 7) and 2) the Ppa-Pla relationship with Q kept constant (n = 9) in intact anesthetized and ventilated dogs before and after lung injury induced by oleic acid (0.09 ml/kg iv). Q was manipulated by use of a femoral arteriovenous bypass and a balloon catheter inserted in the inferior vena cava. Pla was manipulated with a balloon catheter placed by thoracotomy in the left atrium. Ppa-Q plots were rectilinear before as well as after oleic acid. Before oleic acid, the extrapolated pressure intercept of the Ppa-Q plots approximated Pla. Oleic acid administration resulted in a parallel shift of the Ppa-Q plots to higher pressure; i.e., the pressure intercept increased, whereas the slope was not modified. Increasing Pla at constant Q before oleic acid led to a proportional augmentation of Ppa. After oleic acid, however, changes in Pla over the same range affected Ppa only at the highest levels of Pla. These results suggest that oleic acid lung injury increases the critical closing pressure that exceeds Pla, becomes the effective outflow pressure of the pulmonary circulation, and is responsible for the pulmonary hypertension.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献