Estimation of total systemic arterial compliance in humans

Author:

Laskey W. K.1,Parker H. G.1,Ferrari V. A.1,Kussmaul W. G.1,Noordergraaf A.1

Affiliation:

1. Cardiac Catheterization Laboratory, Hospital of the University of Pennsylvania, Philadelphia.

Abstract

Systemic arterial compliance, a major component of aortic input impedance, was determined in 10 patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy and 11 age-matched control subjects found free of detectable cardiovascular disease. Total arterial compliance was determined from high-fidelity ascending aortic pressure and velocity recordings using 1) the traditional monoexponential aortic diastolic pressure decay and 2) the direct solution of the equation, which describes the three-element windkessel model of the arterial system. Resting values for total arterial compliance (x10(-3) cm5/dyn) derived from method 1 were significantly correlated with compliance derived from method 2 (r = 0.89, P less than 0.01). However, method 1 values (control mean 1.15 +/- 0.27, heart failure mean 1.18 +/- 0.54) were consistently and significantly lower (P less than 0.001) than method 2 values (control mean 1.59 +/- 0.50, heart failure mean 1.38 +/- 0.60). Resting total arterial compliance in heart-failure patients was not significantly different from control subjects. Total arterial compliance did not significantly change with exercise in either group despite increases in arterial pressure. However, nitroprusside administration in the heart-failure group increased total arterial compliance both at rest and on exercise compared with the unmedicated state. These different methodological approaches to the estimation of total arterial compliance in humans resulted in significantly different absolute values for compliance, although both methods provided concordant results with respect to the response of arterial compliance to physiological and pharmacological interventions.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3