Affiliation:
1. Department of Biomedical Engineering, Boston University, Boston 02215; and Pulmonary Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
Abstract
Kaczka, David W., Edward P. Ingenito, Bela Suki, and Kenneth R. Lutchen. Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J. Appl. Physiol. 82(5): 1531–1541, 1997.—The contribution of airway resistance (Raw) and tissue resistance (Rti) to total lung resistance (R l ) during breathing in humans is poorly understood. We have recently developed a method for separating Raw and Rti from measurements of Rland lung elastance (El) alone. In nine healthy, awake subjects, we applied a broad-band optimal ventilator waveform (OVW) with energy between 0.156 and 8.1 Hz that simultaneously provides tidal ventilation. In four of the subjects, data were acquired before and during a methacholine (MCh)-bronchoconstricted challenge. The Rland Eldata were first analyzed by using a model with a homogeneous airway compartment leading to a viscoelastic tissue compartment consisting of tissue damping and elastance parameters. Our OVW-based estimates of Raw correlated well with estimates obtained by using standard plethysmography and were responsive to MCh-induced bronchoconstriction. Our data suggest that Rti comprises ∼40% of total Rlat typical breathing frequencies, which corresponds to ∼60% of intrathoracic Rl. During mild MCh-induced bronchoconstriction, Raw accounts for most of the increase in Rl. At high doses of MCh, there was a substantial increase in Rlat all frequencies and in El at higher frequencies. Our analysis showed that both Raw and Rti increase, but most of the increase is due to Raw. The data also suggest that widespread peripheral constriction causes airway wall shunting to produce additional frequency dependence in El.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献