Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans

Author:

Shields Richard K.1,Law Laura Frey1,Reiling Brenda1,Sass Kelly1,Wilwert Jason1

Affiliation:

1. Physical Therapy Graduate Program, College of Medicine, The University of Iowa, Iowa City, Iowa 52242-1008

Abstract

Shields, Richard K., Laura Frey Law, Brenda Reiling, Kelly Sass, and Jason Wilwert. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. J. Appl. Physiol. 82(5): 1499–1507, 1997.—We analyzed the twitch and summated torque (tetanus) during repetitive activation and recovery of the human soleus muscle in individuals with spinal cord injury. Thirteen individuals with complete paralysis (9 chronic, 4 acute) had the tibial nerve activated every 1,500 ms with a 20-Hz train (7 stimuli) for 300 ms and a single pulse at 1,100 ms. The stimulation protocol lasted 3 min and included 120 twitches and 120 tetani. Minimal changes were found for the acute group. The chronic group showed a significant reduction in the torque and a significant slowing of the contractile speeds of both the twitch and tetanus. The decrease in the peak twitch torque was significantly greater than the decrease in the peak tetanus torque early during the fatigue protocol for the chronic group. The twitch time to peak and half relaxation time were prolonged during fatigue, which was associated with improved fusion of the tetanus torque. At the end of the fatigue protocol, the decrease in the peak twitch torque was not significantly different from the decrease in the peak tetanus torque. After 5 min of rest, the contractile speeds recovered causing the tetanus to become unfused, but the tetanus torque became less depressed than the twitch torque. The differential responses for the twitch and the tetanus suggest an interplay between optimal fusion created from contractile speed slowing and excitation contraction coupling compromise. These issues make the optimal design of functional electrical stimulation systems a formidable task.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3