Effects of experimental cortical seizures on respiratory motor nerve activities in piglets

Author:

Terndrup Thomas E.1,Darnall Robert23,Knuth Susan L.2,Bartlett Donald2

Affiliation:

1. Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama 352330-7013; and the Departments of

2. Physiology and

3. Pediatrics, Dartmouth Medical School, Lebanon, New Hampshire 03756

Abstract

Airway obstruction at the level of the larynx causes respiratory insufficiency during experimental seizures in spontaneously breathing, anesthetized piglets (T. E. Terndrup and W. E. Fordyce, Pediatr. Res., 38: 61–66, 1995). To investigate further the neural mechanisms of this obstruction, the activities of the phrenic nerve (PH) and the recurrent laryngeal motor branches to the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles were analyzed in 11 anesthetized, vagotomized, paralyzed, and ventilated piglets. After a control recording period, seizures were induced by subcortical penicillin G injections. Compared with baseline conditions, nerve activities became irregular during seizures. Extraneous TA bursts during PH activation were evident in all piglets during seizures. During ictal phases of seizures, the peak integrated activities of the PH and the expiratory component of the PCA, but not TA or inspiratory PCA activities, were significantly decreased compared with interictal phases. During seizures, a significant delay in the onset of the inspiratory component of PCA activation with respect to the onset of the PH was observed. This study helps to explain respiratory impairment during cortical seizures by providing evidence of impaired timing of activation of laryngeal dilator mechanisms and coordination with those activating the diaphragm. Cyclical PH inhibition during high-intensity cortical discharges may provide a secondary mechanism producing respiratory insufficiency during seizures.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3