Renal hemodynamics, tubular function, and response to low-dose dopamine during acute hypoxia in humans

Author:

Olsen N. V.1,Hansen J. M.1,Kanstrup I. L.1,Richalet J. P.1,Leyssac P. P.1

Affiliation:

1. Department of Clinical Physiology, Herlev Hospital, University of Copenhagen, Denmark.

Abstract

Renal function was investigated in eight normal subjects before and during infusion of dopamine (3 micrograms.kg-1 x min-1) at sea level (SL) and at high altitude (HA, 4,350 m). Lithium clearance (CLi) was used as an index of proximal tubular outflow. HA significantly increased arterial pressure, heart rate, and plasma norepinephrine. Effective renal plasma flow (ERPF) decreased at HA by 10% (P < 0.05), but glomerular filtration rate (GFR), CLi, sodium clearance (CNa), and urine flow remained unchanged compared with SL. Dopamine at SL and HA increased ERPF by 47% (P < 0.001) and 30% (P < 0.01), respectively, but the increase at HA was smaller than that at SL (P < 0.05). Dopamine increased GFR only at SL. CLi and CNa increased by 29% (P < 0.001) and 108% (P < 0.001) at SL and by 23% (P < 0.01) and 108% (P < 0.001) at HA. Whereas dopamine at SL increased urine flow by 46% (P < 0.01), this response was abolished at HA, and free water clearance decreased (P < 0.05). The decreased ERPF at HA suggests a constriction of the renal arterioles secondary to increased adrenergic nervous activity. Although the effect of dopamine on ERPF was attenuated in hypoxia, dopamine-induced increases in CLi and CNa remained unaltered, suggesting that natriuresis in both environments was secondary to an increased outflow from the proximal tubules. The absence of a diuretic response to dopamine at HA seemed to be caused by an effect on distal tubular function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3