Estimation of body composition changes during weight cycling by bioelectrical impedance analysis in rats

Author:

Ilagan J.1,Bhutani V.1,Archer P.1,Lin P. K.1,Jen K. L.1

Affiliation:

1. Department of Nutrition and Food Science, Wayne State University, Detroit 48202.

Abstract

The effects of body weight cycling (WC) in rats on body composition (BC) and feeding efficiency were studied. The usefulness of estimating BC by bioelectrical impedance analysis (BIA) was also examined. Female Sprague-Dawley rats were divided into high-fat ad libitum feeding, either noncycling or cycling, or restricted feeding (75% of control feed) cycling groups. Control rats were fed a regular laboratory ad libitum diet and did not cycle. All rats were killed at the end of week 61. A BIA unit was used at each stage of WC to obtain resistance and reactance readings. Final BC was determined by chemical analysis. On the basis of the final chemical analysis and BIA measurements, an equation was established and applied to estimate BC at each stage of WC: fat-free mass (g) = 0.38 x body wt (g) + 13.8 x [length (cm)2/resistance] + 70.9 (r = 0.95, P < 0.001). High-fat ad libitum feeding induced rapid body weight and fat gains as well as an elevated feeding efficiency and an internal fat-to-subcutaneous fat ratio, regardless of whether the rats cycled. This change in fat mass was clearly detected by the BIA. Although rats fed restricted diets had similar body weights as did control rats, they had a significantly higher internal fat-to-subcutaneous fat ratio. Thus, not only the amount of food but also the composition of the diet is important for proper weight management. The BIA method is capable of detecting the body fat mass change during WC.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3