Effect on breathing of acute pressure rise in pulmonary artery and right ventricle

Author:

Lloyd T. C.

Abstract

We tested the hypothesis that breathing would be regulated in response to right ventricular and pulmonary arterial pressure changes when secondary events are controlled. Dogs were anesthetized, thoracotomies were performed, and cardiopulmonary bypass perfusion was established. Lungs were inflated to sustained pressures. The left diaphragmatic lobe was retrogradely cannulated and all other lobar arteries were ligated, forming a pulmonary arterial sac that drained to the oxygenator from the cannula and filled from systemic venous return by the beating right ventricle. Right atrial pressure was adjusted to produce sac flows of approximately 400 ml/min. We recorded systemic and pulmonary arterial pressures, sac flow, and the integrated diaphragm electromyogram (DEMG). Resistive loads were imposed on sac outflow by adjusting a clamp. Loaded mean pulmonary arterial pressures ranged from 27 to 70 Torr. Loading increased respiratory frequency without affecting peak DEMG amplitude. Responses did not occur after vagotomy. Effects were quantitatively modest: pressurization to approximately 50 Torr increased frequency approximately 3.4 breaths/min (22%). The magnitude of change was insufficient to explain in intact dogs the ventilatory responses that have been attributed to this reflexogenic unit.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control of Breathing During Exercise;Colloquium Series on Integrated Systems Physiology: From Molecule to Function;2014-07-31

2. Respiratory Monitoring During VA ECMO;ECMO-Extracorporeal Life Support in Adults;2014

3. Breathing during cardiac arrest following exercise: A new function of the respiratory system?;Respiratory Physiology & Neurobiology;2012-04

4. Control of Breathing During Exercise;Comprehensive Physiology;2012-01

5. Control of breathing during acute change in cardiac preload in a patient with partial cardiopulmonary bypass;Respiratory Physiology & Neurobiology;2010-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3