Electromechanical coupling of ferret airway smooth muscle in response to leukotriene C4

Author:

Murlas C. G.1,Doupnik C. A.1

Affiliation:

1. Department of Medicine, University of Cincinnati School of Medicine, Ohio 45267.

Abstract

We investigated the possible electrophysiological basis for the slow, prolonged force generation by airway smooth muscle (ASM) produced by leukotriene C4 (LTC4). Preparations of ASM were made from ferret trachea and placed in tissue microchambers for study. Some of these preparations were arranged so that force transducers and intracellular microelectrodes (with tip resistances of 30–80 M omega) could be used to measure isometric force and cell membrane potential (Em) simultaneously from ASM cells stimulated by LTC4. We found that ferret tracheal muscle was relatively sensitive to LTC4 and that this sensitivity was not significantly affected by atropine (1 microM), phentolamine (1 microM), propranolol (3 microM), and pyrilamine (1 microM). In a 1 nM solution of LTC4, Em was -54.0 +/- 1.2 mV from 18 impalements (n) from 6 animals (N) compared with a base-line value of -61.6 +/- 0.8 mV (n/N = 29/8, P less than 0.0005). This change did not lead to force generation, however. Higher concentrations of LTC4 led to progressive decreases in Em to which force generation was closely coupled. Concentrations greater than or equal to 70 nM led to phasic oscillations in Em of 0.6–0.8 Hz and 1.7 mV in amplitude, which were abolished by 10 microM verapamil, although the base-line Em was unaffected by this concentration. Although 300 nM LTE4 by itself caused only a small depolarization of ferret trachealis, it substantially antagonized the electromechanical responsiveness of this smooth muscle to LTC4. We conclude that ferret ASM is relatively sensitive to LTC4 and that there is an electrical basis for the slow, prolonged force generation caused by this mediator.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3