Inspiratory muscle interaction in the generation of changes in airway pressure

Author:

DiMarco A. F.1,Supinski G. S.1,Budzinska K.1

Affiliation:

1. Department of Medicine, Metropolitan General Hospital, Cleveland, Ohio 44109.

Abstract

The mechanical interaction of the inspiratory muscles in the generation of changes in airway pressure is unclear. Using upper thoracic spinal cord stimulation to activate the intercostal muscles (IC) and bilateral supramaximal phrenic nerve stimulation to activate the diaphragm (D), we measured the changes in airway pressure produced by separate and combined IC and D activation over a wide range of lung volumes. Changes in parasternal IC and D length were assessed by sonomicrometry. With increasing lung volume, activation of the IC and D resulted in progressive decrements in generated airway pressure. Combined IC and D contraction produced greater negative swings in airway pressure than the arithmetic sum of separate IC and D contraction alone, indicating a synergistic effect. Moreover, synergism increased progressively with increasing lung volume. During combined muscle contraction, both the IC and D shortened less than during contraction of either muscle group alone. The tendency for the parasternal muscle to lengthen for a given change in airway pressure during D contraction alone increased with increasing lung volume, suggesting that the tendency for the rib cage to recoil inward increased progressively with increasing lung volume. Likewise, the tendency of the D to lengthen for a given change in airway pressure during IC contraction alone also increased progressively with increasing lung volume, suggesting that the tendency for the abdomen-D compartment to recoil inward also increased with increasing lung volume. We conclude that the IC and D interact synergistically to produce changes in airway pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3