Threshold for muscle lactate accumulation during progressive exercise

Author:

Chwalbinska-Moneta J.1,Robergs R. A.1,Costill D. L.1,Fink W. J.1

Affiliation:

1. Human Performance Laboratory, Ball State University, Muncie, Indiana 47306.

Abstract

The purpose of this study was to investigate the relationship between muscle and blood lactate concentrations during progressive exercise. Seven endurance-trained male college students performed three incremental bicycle ergometer exercise tests. The first two tests (tests I and II) were identical and consisted of 3-min stage durations with 2-min rest intervals and increased by 50-W increments until exhaustion. During these tests, blood was sampled from a hyperemized earlobe for lactate and pH measurement (and from an antecubital vein during test I), and the exercise intensities corresponding to the lactate threshold (LT), individual anaerobic threshold (IAT), and onset of blood lactate accumulation (OBLA) were determined. The test III was performed at predetermined work loads (50 W below OBLA, at OBLA, and 50 W above OBLA), with the same stage and rest interval durations of tests I and II. Muscle biopsies for lactate and pH determination were taken at rest and immediately after the completion of the three exercise intensities. Blood samples were drawn simultaneously with each biopsy. Muscle lactate concentrations increased abruptly at exercise intensities greater than the “below-OBLA” stage [50.5% maximal O2 uptake (VO2 max)] and resembled a threshold. An increase in blood lactate and [H+] also occurred at the below-OBLA stage; however, no significant change in muscle [H+] was observed. Muscle lactate concentrations were highly correlated to blood lactate (r = 0.91), and muscle-to-blood lactate ratios at below-OBLA, at-OBLA, and above-OBLA stages were 0.74, 0.63, 0.96, and 0.95, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3