Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity

Author:

McDonald K. S.1,Fitts R. H.1

Affiliation:

1. Biology Department, Marquette University, Milwaukee, Wisconsin 53233, USA.

Abstract

The purpose of this study was to examine the time course of change in soleus muscle fiber peak force (N), tension (Po, kN/m2), elastic modulus (Eo), and force-pCa and stiffness-pCa relationships. After 1, 2, or 3 wk of hindlimb unloading (HU), single fibers were isolated and placed between a motor arm and a transducer, and fiber diameter, peak absolute force, Po, Eo, and force-pCa and stiffness-pCa relationships were characterized. One week of HU resulted in a significant reduction in fiber diameter (68 +/- 2 vs 57 +/- 1 microns), force (3.59 +/- 0.15 vs. 2.19 +/- 0.12 x 10(-4) N), Po (102 +/- 4 vs. 85 +/- 2 kN/m2), and Eo (1.96 +/- 0.12 vs. 1.37 +/- 0.13 x 10(7) N/m2), and 2 wk of HU caused a further decline in fiber diameter (45 +/- 1 microns), force (1.31 +/- 0.06 x 10(-4) N), and Eo (0.96 +/- 0.09 x 10(7) N/m2). Although the mean fiber diameter and absolute force continued to decline through 3 wk of HU, Po recovered to values not significantly different from control. The Po/Eo ratio was significantly increased after 1 (5.5 +/- 0.3 to 7.1 +/- 0.6), 2, and 3 wk of HU, and the 2-wk (9.5 +/- 0.4) and 3-wk (9.4 +/- 0.8) values were significantly greater than the 1-wk values. The force-pCa and stiffness-pCa curves were shifted rightward after 1, 2, and 3 wk of HU. At 1 wk of HU, the Ca2+ sensitivity of isometric force, assessed by Ca2+ concentration required for half-maximal force, was increased from the control value of 1.83 +/- 0.12 to 2.30 +/- 0.10 microM. In conclusion, after HU, the decrease in soleus fiber Po can be explained by a reduction in the number of myofibrillar cross bridges per cross-sectional area. Our working hypothesis is that the loss of contractile protein reduces the number of cross bridges per cross-sectional area and increases the filament lattice spacing. The increased spacing reduces cross-bridge force and stiffness, but Po/Eo increases because of a quantitatively greater effect on stiffness.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3