Effects of physical properties of the breathing gas on decompression-sickness bubbles

Author:

Burkard M. E.1,Van Liew H. D.1

Affiliation:

1. Department of Physiology, State University of New York at Buffalo 14214, USA.

Abstract

To explore the relative dangers of different inert gases, we developed mathematical relationships concerned with bubble growth, using equations that separate gas properties from other variables. Predictions for saturation exposures were as follows. 1) Peak volume of a bubble is proportional to solubility in tissue when bubble density is high and to the 3/2 power of the ratio of the permeation coefficient to the partition coefficient when density is low. 2) Bubble duration is inversely proportional to the partition coefficient for the inert gas. 3). Sizes and durations of bubbles for one inert gas relative to another depend on whether the tissue is aqueous or lipid but are independent of the magnitude of the decompression and tissue half time. 4). He should give smaller bubbles than N2, except in aqueous tissue with low bubble density; our prediction correlates qualitatively with relative dangers observed with animals but seems to overestimate the safety afforded by He. Numerical simulations illustrate how nonsaturation dives are less predictable because more variables are involved.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3