Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening

Author:

Perun M. L.1,Gaver D. P.1

Affiliation:

1. Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.

Abstract

In this study, our goal is to identify the interaction between airway lining fluid viscous and surface forces and parenchymal tethering forces during pulmonary airway reopening. The type of closure we modeled occurs when the airway walls and surrounding parenchyma collapse and are held in apposition by the lining fluid. We mimicked this system with a polyethylene tube coated with a Newtonian lining fluid supported by open-cell foam. Reopening occurs when a finger of air travels through the collapsed region. We measured the airway pressure (Paw) required to open the airway at a constant velocity (U). Increasing the foam stiffness (K), lining fluid viscosity (mu), and surface tension (gamma) results in an increase in Paw. Furthermore, increasing the downstream suction pressure (Pds), through tethering, causes an equivalent reduction in Paw. The upstream radius is the primary length scale, and fluid forces are represented by the capillary number: Ca = microU/gamma. On the basis of these results, we predicted the likelihood that tethering would begin to reopen collapsed airways in various disease states. This analysis showed that the ratio of tethering to fluid forces determines airway patency, which is defined as follows: lambda = PTrans/(gamma/R), where PTrans = Paw-Pds and R is airway radius. Finally, lung volume-dependent surface tension appears to be necessary to stabilize the lung.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3