Cardiovascular responses at the onset of static exercise in patients with dual-chamber pacemakers

Author:

Williamson J. W.1,Nobrega A. C.1,Garcia J. A.1,Friedman D. B.1,Mitchell J. H.1

Affiliation:

1. Harry S. Moss Heart Center, University of Texas Southwestern Medical Center, Dallas 75235–9034, USA.

Abstract

Cardiac output (CO) responses to exercise can be altered by ventricular pacing in pacemaker-dependent patients. The relative contributions of CO and peripheral vascular resistance (PVR) toward the initial increase in blood pressure with the initiation of static exercise were investigated in eight otherwise healthy pacemaker-dependent subjects [age 24 +/- 2 yr (range 17–37 yr)]. Beat-by-beat measures of heart rate (HR; electrocardiography), mean arterial pressure (MAP), and CO derived from stroke volume (SV) (CO = HR.SV; 2-D echocardiography) were determined during the first 20 s of a one-legged static knee extension performed at 20% maximal voluntary effort by using three pacing modalities: dual pacing and sensing mode (DDD, i.e., normal physiological HR response), fixed at resting HR (DOO-R), and fixed at peak exercise HR (DOO-E), as previously achieved during 5 min of sustained contraction in the DDD mode. There were no differences in MAP, CO, or PVR (PVR = MAP/CO) between modes at rest (P > 0.05). With DOO-E pacing, SV was lower at rest compared with the other modes and increased with exercise (P < 0.05). Although there were no significant increase in MAP or CO during DOO-R pacing, both variables were elevated by leg contraction during DDD and DOO-E pacing (P < 0.05), with no significant change in PVR. Additionally, the CO and MAP increases were significantly greater with DOO-E pacing (P < 0.05). Thus the magnitude of the initial increase in arterial pressure at the onset of mild one-legged static exercise was dictated by the changes in CO as PVR remained unchanged.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3