Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure

Author:

Wyszogrodski I.,Kyei-Aboagye K.,Taeusch H. W.,Avery M. E.

Abstract

Hyperventilation, defined as repeated hyperinflations, for three hours in open-chested anesthetized cats increased elastic recoil and elevated minimum surface tension of lung extracts as measured on a surface film balance. Equivalent hyperventilation from an elevated lung volume did not alter the pressure-volume relationships. When a mixture of [3H]glycerol and [14C]palmitate had been injected 17 h before the three hour period of phyerventilation, an increase in the ratio of specific activity in wash to tissue lecithin occurred in the hyperventilated cats compared to controls. These findings suggest that hyperventilation promotes release of surface active material from tissue to alveolus, but the released material is inactivated. The application of 2.5 cmH2O positive end-expiratory pressure prevented the adverse effects of hyperventilation. The same increase in wash to tissue lecithin occurred during this study; since the material was appropriately surface active, we conclude that the positive end-expiratory pressure prevented its inactivation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sleep-Related Breathing Disorders;Noninvasive Mechanical Ventilation and Neuropsychiatric Disorders;2023

2. Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury;American Journal of Physiology-Lung Cellular and Molecular Physiology;2022-09-01

3. Constant Vt Ventilation and Surfactant Dysfunction: An Overlooked Cause of Ventilator-induced Lung Injury;American Journal of Respiratory and Critical Care Medicine;2022-01-15

4. Continuous Distending Pressure;Manual of Neonatal Respiratory Care;2022

5. Early versus delayed continuous positive airway pressure (CPAP) for respiratory distress in preterm infants;Cochrane Database of Systematic Reviews;2020-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3