Influence of starvation on the lung: effect on glucose and palmitate utilization

Author:

Rhoades R. A.

Abstract

The relative utilization of [U-14C]glucose and [1–14C]palmitate was examined in lung slices of male Long Evans hooded rats fed ad libitum and starved for 72 h. Food deprivation (72-h fast) significantly decreased [U-14C]flucose oxidation and incorporation into lung lipids. Glucose incorporation into phospholipid-fatty acid (53%) was, in proportion, more markedly reduced than into phospholipid-gluceride glycerol (33%), suggesting that glucose was being conserved for the formation of alpha-glycerol phosphate. (1–14C) palmitate utilization following fasting showed a significant 40% increase in oxidation, and a significant 16% increase in phospholipids, indicating preferential utilization of fatty acids over glucose. Phospholipid fatty acid composition, surface tension measurements and volume-pressure curves were not affected by fasting. Khe data indicate that glucose and palmitate metabolism are interrelated, and that the relative utilization of these substrates is changed to maintain essential lung lipids during an altered physiologic state.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAM13A, A Fatty Acid Oxidation Switch in Mitochondria. Friend or Foe in Chronic Obstructive Pulmonary Disease Pathogenesis?;American Journal of Respiratory Cell and Molecular Biology;2017-06

2. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells;American Journal of Respiratory Cell and Molecular Biology;2014-03-13

3. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure;American Journal of Physiology-Lung Cellular and Molecular Physiology;2013-11-15

4. Effect of severe calorie restriction on the lung in two strains of mice;American Journal of Physiology-Lung Cellular and Molecular Physiology;2008-08

5. Substrate Utilization by the Lung;Ciba Foundation Symposium 78 - Metabolic Activities of the Lung;2008-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3