Optimized estimation of respiratory impedance by signal averaging in the time domain

Author:

Farre R.1,Rotger M.1,Navajas D.1

Affiliation:

1. Laboratori Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain.

Abstract

The spontaneous breathing of a subject during measurements of respiratory impedance (Zrs) by the forced oscillation technique (FOT) induces errors that result in biased impedance estimates, especially at low frequencies. Although in standard measurements this bias may be avoided by using special impedance estimators, there are two applications of FOT for which such estimators are not useful: when a head generator is used and when measurements are made during intubation. In this paper we describe a data-processing procedure for unbiased impedance estimation for all FOT setups. The proposed estimator (Z) was devised for pseudorandom excitation and is based on time-domain signal averaging before frequency analysis. The performance of estimator Z was first analyzed by computer simulation of a head generator setup and a setup including an endotracheal tube to measure (2–32 Hz) a resistance-inertance-elastance model mimicking Zrs of a healthy subject. Second, Z was assessed during real measurements in 16 healthy subjects. The results obtained in the simulation (e.g., error in elastance was reduced from 15.6% with most conventional estimators to 3.3% with Z in simulation of head generator setup) and in the measurements in subjects (differences of less than 1.6% between Z and a reference) confirmed the theoretical lack of bias of Z and its practical suitability for the different FOT setups. In addition to its applicability in the situations in which no other unbiased estimators are available, estimator Z is also advantageous in most conventional applications of FOT, since it requires much less computing time and thus allows on-line Zrs measurements.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3