Quantification of regional V/Q ratios in humans by use of PET. I. Theory

Author:

Rhodes C. G.1,Valind S. O.1,Brudin L. H.1,Wollmer P. E.1,Jones T.1,Hughes J. M.1

Affiliation:

1. Medical Research Council Cyclotron Unit, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.

Abstract

With positron emission tomography, quantitative measurements of regional alveolar and mixed venous concentrations of positron-emitting radioisotopes can be made within a transaxial section through the thorax. This allows the calculation of regional ventilation-to-perfusion (V/Q) ratios by use of established tracer dilution theory and the constant intravenous infusion of 13N. This paper considers the effect of the inspiration of dead-space gas on regional V/Q and investigates the relationship between the measured V/Q, physiological V/Q, and V/Q defined conventionally in terms of bulk gas flow (VA/Q). Ventilation has been described in terms of net gas transport, and the term effective ventilation has been introduced. A simple two-compartment model has been constructed to allow for the reinspiration of regional (or personal) and common dead-space gas. By use of this model, with parameters representative of normal lung the effective V/Q ratio for 13N [(VA/Q)eff(13N)] is shown to overestimate VA/Q by 18% when VA/Q = 0.1 but underestimate VA/Q by 68% when VA/Q = 10. For physiological gases, the model predicts that the behavior of O2 should be similar to that of 13N, so that, in terms of gas transport, V/Q ratios obtained using the infusion of 13N closely follow those for O2. Values of the effective V/Q ratio for CO2 [(VA/Q)eff(CO2)] lie approximately halfway between (VA/Q)eff(13N) and VA/Q. These results indicate that dead-space ventilation is far less a confounding issue when V/Q is considered in terms of net gas transport (VAeff), rather than bulk flow (VA).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3