Stress failure in pulmonary capillaries

Author:

West J. B.1,Tsukimoto K.1,Mathieu-Costello O.1,Prediletto R.1

Affiliation:

1. Department of Medicine, University of California, San Diego, La Jolla 92093-0623.

Abstract

In the mammalian lung, alveolar gas and blood are separated by an extremely thin membrane, despite the fact that mechanical failure could be catastrophic for gas exchange. We raised the pulmonary capillary pressure in anesthetized rabbits until stress failure occurred. At capillary transmural pressures greater than or equal to 40 mmHg, disruption of the capillary endothelium and alveolar epithelium was seen in some locations. The three principal forces acting on the capillary wall were analyzed. 1) Circumferential wall tension caused by the transmural pressure. This is approximately 25 dyn/cm (25 mN/m) at failure where the radius of curvature of the capillary is 5 microns. This tension is small, being comparable with the tension in the alveolar wall associated with lung elastic recoil. 2) Surface tension of the alveolar lining layer. This contributes support to the capillaries that bulge into the alveolar spaces at these high pressures. When protein leakage into the alveolar spaces occurs because of stress failure, the increase in surface tension caused by surfactant inhibition could be a powerful force preventing further failure. 3) Tension of the tissue elements in the alveolar wall associated with lung inflation. This may be negligible at normal lung volumes but considerable at high volumes. Whereas circumferential wall tension is low, capillary wall stress at failure is very high at approximately 8 x 10(5) dyn/cm2 (8 x 10(4) N/m2) where the thickness is only 0.3 microns. This is approximately the same as the wall stress of the normal aorta, which is predominantly composed of collagen and elastin. The strength of the thin part of the capillary wall is probably attributable to the collagen IV of the basement membranes. The safety factor is apparently small when the capillary pressure is raised during heavy exercise. Stress failure causes increased permeability with protein leakage, or frank hemorrhage, and probably has a role in several types of lung disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 448 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3