Modification of pulmonary gas mixing by postural changes

Author:

Jones H. A.,Davies E. E.,Hughes J. M.

Abstract

Mixing for two gases of markedly different gaseous diffusivity, helium (He) (mol wt = 4) and sulfur hexafluoride (SF6) (mol wt = 146) has been studied by a rebreathing method in different postures. In nine normal subjects duplicate measurements were made in the erect (seated), supine, and lateral decubitus posture, at a constant tidal volume (700 ml) and frequency (1 Hz) starting from functional residual capacity (FRC). Additional measurements were made on four of the subjects, rebreathing seated erect at a volume similar to the relaxed FRC supine and supine at a volume similar to the relaxed FRC seated. In the supine posture the mean breath number to reach 99% equilibrium (n99), was not significantly different for the two gases, 8.9 for He and 9.8 for SF6. There was a difference (P less than 0.01) when erect; n99 (He) = 8.2 and n99 (SF6) = 10.9. The greatest He-SF6 difference (P less than 0.001) was in the lateral decubitus position n99 (He) = 10.1 and n99 (SF6) = 15.9. The mean relaxed FRC as percent of seated was 71% supine and 75% in lateral decubitus posture. Rebreathing seated at a lower volume did not abolish the He-SF6 mixing difference nor did rebreathing at a higher volume when supine induce a He-SF6 mixing difference. Thus the effect of posture on gas mixing cannot be due solely to lung volume and must represent a convective and diffusive dependent change in the distribution of ventilation per unit lung volume.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3