Author:
Pack A. I.,Ogilvie M. D.,Davies R. O.,Galante R. J.
Abstract
Studies were conducted in anesthetized paralyzed dogs to determine how the dynamic and proportional sensitivity of pulmonary stretch receptors change during lung inflation. The firing of each receptor was examined at multiple levels of static transpulmonary pressure and during multiple identical inflations at each of several rates. The averaged response of the receptor was computed and receptor activity related to transpulmonary pressure. On the basis of a quantitative criterion, employed to distinguish type I from type II receptors, the receptors could not be divided into distinct subpopulations. Thus all receptors were treated as coming from a single population. For all receptors we observed that their proportional sensitivity (increases in firing produced by increases in lung expansion at a constant rate of inflation) declined as the lung was inflated. In contrast, the dynamic sensitivity (increases in firing produced by increased rates of inflation at constant transpulmonary pressure) increased or remained relatively constant with increasing lung expansion. Thus, as inflation volume increases, the pulmonary stretch receptor acts increasingly as a rate receptor. The rate of inflation may have a more important role in control of the inspiratory duration than previously realized.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献