Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome

Author:

Shrier Ian1,Baratz Ari2,Magder Sheldon3

Affiliation:

1. Herzl Family Practice Centre, Centre for Clinical Epidemiology and Community Studies, and Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal H3T 1Z6;

2. Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H3A 1A1

3. Critical Care Division, Royal Victoria Hospital, Montreal; and

Abstract

Shrier, Ian, Ari Baratz, and Sheldon Magder. Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome. J. Appl. Physiol. 82(3): 755–759, 1997.—Blood flow through skeletal muscle is best modeled with a vascular waterfall at the arteriolar level. Under these conditions, flow is determined by the difference between perfusion pressure (Pper) and the waterfall pressure (Pcrit), divided by the arterial resistance (Ra). By pump perfusing an isolated canine gastrocnemius muscle ( n = 6) after it was placed within an airtight box, with and without adenosine infusion, we observed an interaction between the pressure surrounding a muscle (as occurs in compartment syndrome) and baseline vascular tone. We titrated adenosine concentration to double baseline flow. We measured Pcrit and Ra at box pressures (Pbox), which resulted in 100 (Pbox = 0), 90, 75, and 50% flow without adenosine; and 200, 180, 150, 100, and 50% flow with adenosine. Without adenosine, each 10% decline in flow was associated with a 5.7 mmHg increase in Pcrit ( P < 0.01). With adenosine, the same decrease in flow was associated with a 2.6-mmHg increase in Pcrit ( P < 0.01). Values of Pcrit at 50% of flow were almost identical. Each 10% decrease in flow was also associated with 2.2% increase in Ra with or without adenosine ( P < 0.001). Ra decreased with adenosine infusion ( P < 0.05), and there was no interaction between adenosine and flow ( P > 0.9). We conclude that increases in pressure surrounding a muscle limit flow primarily through changes in Pcrit with and without adenosine-induced vasodilation. The interaction between Pbox and adenosine with respect to Pcrit but not Ra suggests that Pbox affects the tone of the vessels responsible for Pcrit but not Ra.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physiological Aspects of Arterial Blood Pressure;Cardiopulmonary Monitoring;2021

2. The meaning of blood pressure;Critical Care;2018-10-11

3. The Highs and Lows of Blood Pressure;Critical Care Medicine;2014-05

4. Use of Tissue Ultrafiltration for Treatment of Compartment Syndrome;Journal of Orthopaedic Trauma;2005-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3