Author:
Nioka S.,Chance B.,Hilberman M.,Subramanian H. V.,Leigh J. S.,Veech R. L.,Forster R. E.
Abstract
The relationships between pHi (intracellular pH) and phosphate compounds were evaluated by nuclear magnetic resonance (NMR) in normo-, hypo-, and hypercapnia, obtained by changing fractional inspired concentration of CO2 in dogs anesthetized with 0.75% isoflurane and 66% N2O. Phosphocreatine (PCr) fell by 2.02 mM and Pi (inorganic phosphate) rose by 1.92 mM due to pHi shift from 7.10 to 6.83 during hypercapnia. The stoichiometric coefficient was 1.05 (r2 = 0.78) on log PCr/Cr against pHi, showing minimum change of ADP/ATP and equilibrium of creatine kinase in the pH range of 6.7 to 7.25. [ADP] varied from 21.6 +/- 4.1 microM in control (pHi = 7.10) to 26.8 +/- 6.3 microM in hypercapnia (pHi = 6.83) and 24.0 +/- 6.8 microM in hypocapnia (pHi = 7.17). ATP/ADP X Pi decreased from 66.4 +/- 17.1 mM-1 during normocapnia to 25.8 +/- 6.3 mM-1 in hypercapnia. The ADP values are near the in vitro Km; thus ADP is the main controller. The velocity of oxidative metabolism (V) in relation to its maximum (Vmax) as calculated by a steady-state Michaelis-Menten formulation is approximately 50% in normocapnia. In acidosis (pH 6.7) and alkalosis (pH 7.25), V/Vmax is 10% higher than the normocapnic brain. This increase of V/Vmax is required to maintain cellular homeostasis of energy metabolism in the face of either inhibition at extremes of pH or higher ATPase activity.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献