Abstract
The independent roles of alveolar size and surface tension in relation to lung stability were investigated in 11 different mammalian species whose body weight ranged from 0.03 to 50 kg. This range in species provided a wide variation in subgross anatomy as well as a fourfold range in alveolar diameter. Alveolar diameter was estimated from the mean linear intercept (Lm) of fixed lungs. Quasi-static pressure-volume curves were determined in excised lungs and the percent volume remaining on deflation from total lung capacity at 30 cmH2O to 10 cmH2O (%V10) provided an index of deflation stability related to functional surfactant. Surface tension of lung extract was measured in the Wilhelmy balance, and the minimum surface tension measured provided an index of surface tension lowering capacity of surfactant. Relationships of %V10 with alveolar diameter and surface tension with alveolar diameter were examined for correlations. Our results indicated that despite a range in Lm between 31 and 133 micron (mouse to pig), %V10 did not change in proportion with Lm across species. Similarly, minimum surface tension was about the same (6.1 to 8.8 dyn/cm) across a threefold difference in alveolar diameter. These results suggest that a stable alveolar configuration is maintained by both surface and tissue forces in a complex manner yet to be analyzed.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献